Holography is often referred to as 3D photography, this is a misconception. A better analogy is sound recording where the sound field is encoded in such a way that it can later be reproduced. In holography, some of the light scattered from an object or a set of objects falls on the recording medium. A second light beam, known as the reference beam, also illuminates the recording medium, so that interference occurs between the two beams. The resulting light field is an apparently random pattern of varying intensity which is the hologram. It can be shown that if the hologram is illuminated by the original reference beam, a light field is diffracted by the reference beam which is identical to the light field which was scattered by the object or objects. Thus, someone looking into the hologram "sees" the objects even though they are no longer present. There are a variety of recording materials which can be used, including photographic film.
Point Sources
A slightly more complicated hologram can be made using a point source of light as object beam and a plane wave as reference beam to illuminate the photographic plate. An interference pattern is formed which in this case is in the form of curves of decreasing separation with increasing distance from the centre.
The photographic plate is developed giving a complicated pattern which can be considered to be made up of a diffraction pattern of varying spacing. When the plate is illuminated by the reference beam alone, it is diffracted by the grating into different angles which depend on the local spacing of the pattern on the plate. It can be shown that the net effect of this is to reconstruct the object beam, so that it appears that light is coming from a point source behind the plate, even when the source has been removed. The light emerging from the photographic plate is identical to the light that emerged from the point source that used to be there. An observer looking into the plate from the other side will "see" a point source of light whether the original source of light is there or not.
This sort of hologram is effectively a concave lens, since it "converts" a plane wavefront into a divergent wavefront. It will also increase the divergence of any wave which is incident on it in exactly the same way as a normal lens does. Its focal length is the distance between the point source and the plate.
Concept
Basically an animation would be projected on to the spinning mirror which is going to create the holographic display. The spinning mirror would be mounted onto a fan's motor. I would be using a projector to project the animation. The animation would be a 3D visualization called "whitecap" which is normally used on windows media player. At the right angel the holographic display would appear.